Locally nilpotent 4-Engel groups are Fitting groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4-Engel Groups are Locally Nilpotent

Questions about nilpotency of groups satisfying Engel conditions have been considered since 1936, when Zorn proved that finite Engel groups are nilpotent. We prove that 4-Engel groups are locally nilpotent. Our proof makes substantial use of both hand and machine calculations.

متن کامل

Locally Nilpotent Linear Groups

This article examines aspects of the theory of locally nilpotent linear groups. We also present a new classification result for locally nilpotent linear groups over an arbitrary field F. 1. Why Locally Nilpotent Linear Groups? Linear (matrix) groups are a commonly used concrete representation of groups. The first investigations of linear groups were undertaken in the second half of the 19th cen...

متن کامل

Robert Fitzgerald Morse: Solvable Engel Groups 1 Solvable Engel Groups with Nilpotent Normal Closures

In this paper we investigate certain solvable (n+1)-Engel groups and bounded left Engel groups. We show that these (n + 1)-Engel groups can be characterized as those groups in which the normal closure of each element in the group is nilpotent of class at most n. Similarly, the bounded left Engel groups investigated can be characterized as those groups in which the normal closure of each element...

متن کامل

Computing with 4-engel Groups

We have proved that 4-Engel groups are locally nilpotent. The proof is based upon detailed computations by both hand and machine. Here we elaborate on explicit computer calculations which provided some of the motivation behind the proof. In particular we give details on the hardest coset enumerations now required to show in a direct proof that 4-Engel p-groups are locally finite for 5 ≤ p ≤ 31....

متن کامل

Subgroups defining automorphisms in locally nilpotent groups

We investigate some situation in which automorphisms of a groupG are uniquely determined by their restrictions to a proper subgroup H . Much of the paper is devoted to studying under which additional hypotheses this property forces G to be nilpotent if H is. As an application we prove that certain countably infinite locally nilpotent groups have uncountably many (outer) automorphisms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2003

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2003.07.012